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Introduction 
THERMAL radiation in a gm is generally complicated 

by the fact thnt the radiation pasaing a given plane originates at 
points throughout the gas. This lends to the necessity of solving 
an integral equation However, if the gas is opticdy thick, 
the mean free path for the radiant energy may be small com- 
pared with the overall dimensions of the system. Under these 
conditions the r:idiation can be considered as a diffusion process, 
and the problem reduces to one of solving a modified heat conduc- 
tion equation [2,3]. 

.4!t!:ough the difGsion approximation work8 well in the interior 
of a g.w, i t  is not accurate near boundaries. Thus, except for ex- 
tremely large optical thicknesses, considerable error may be made 
in the calculation of radiant heat transfer through a gas for given 
temperatures of the bounding wwlls. This is illustrated in Fig. 2. 

In  the present paper the diffusion equations for the thermal 
radiation in a nongray gaa are first generalized by including 
spacial derivatives of higher order than the first. The range of 
applicability of the diffusion approximation is extended by  in- 
troducing higher order jump boundary conditions at the walls. 

Diffusion Approximation ‘for Thermal 11 6 v 2.6 3 5/ 

Radiation in Gases With Jump 
Condition 

are obtained for radiatize d$iision iii a itoilgray gas and for  the 
energy j u m p  at a wall. B y  using the second-order energy j i imp at a wall, the 
diffusion approximation for radiation i n  a gas is improved considerably, the range of 
validity of the approximation being estended to lower values of optical thickness. I 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of TEE AMERICAN 

SOCIETY OF MECHANICAL ENGINEERS and presented at the ASME- 
AIChE Heat Transfer Conference and Exhibit, Boston, Mass., 
August 11-14, 1963. Manuscript received at ASME Headquarters, 
April 23. 1963. Paper No. 63-HT-13. 

- 
Shorin [4] h,w used first order jump boundary conditions, but in- 
asmuch as his results for large optical thickness differ from thoee 
obtained from exact solutions, i t  seems desirable to reexamine the 
whole problem. Konakov [5] has also considered the effect of 
walls on radiation. Although he did not use jump boundary con- 
ditions, his results are similar to those of Shorin, in that they do 
not reduce to the correct form for large optica1 thicknesses [SI. 

The fact that the temperature in the gas next to a wall should 
differ from the wall temperature can be seen physically as follows: 
The radiative flux passing through a plane next to a w d  is made 
up of flux coming from the wall and from gas which, on the 
average, is a rsdistion mean- free path away from the wd. Thua 
the average temperature of the radiation passing through the 
plane next to the wall will lie between the wall temperature and 
the temperature a mean free path away from the wall. This effect 
is similar to the temperature jump next to a wall which occum in 
heat transfer by conduction in rarefied gases. 

Throughout the analysis the heat transfer ie assumed to be en- 
tirely by radiation, the effects of conduction being seaumed 
negligible. This would be an allowable assumption, for instance, 
at very high temperatures. When the effects of conduction are not 
negligible, the conduction and radiation are not strictly additive 
because of the nonlinearity of the equations. However, calcula- 
tions made in reference [7] indicate that the error made in aa- 
suming that they can be added lies between 0 and 9 percent. 

In  the next section the equation for the radiant heat transfer in 
a gas, aa well as for the energy jump at a wall, will be derived. A 

A = area (see Fig. 1) 
c = velocity of light 

cp = specific heat at constant pressure 
D = dia 

dE, = emission from dr at frequency v 
which passes through dA 

dEvl = radiant %ux at frequency v paas- 
ing through dA from above 
(see Fig. 1) 

dE,t = radiant flux at frequency v pas% 
ing through d A  from below (see 
Fig. 1) 

eb = total emissive power of black 

e, = total emissive power of gas, UT‘ 
e, = spectral emissive power of gas 

given by Planck’s distribution 
function, equation (14) 

evb = Spectral emissive power of black 
wall given by Planck’s distribu- 
tion function, equation (14) 

wall, UT-4  

h = Planck’s constant, heat-transfer 

Z = defined by equation (20) 
k = Boltzmann’s constant 
L = thicknessofgasspace 

&’ = heat source per unit volume 
q = radiant heat transfer per unit area 

q. = radisnt heat transfer per unit 
area per unit frequency incre- 
ment 

coefficient 

r = radius 
T = absolute temperature 
t = time 

u = gaa velocity 
I = coordinate defined by Fig. 1 

measured in direction of gae 
flow 

y = coordinate defined by Fig. 1 
z = coordinate defined by Fig. 1 
e = wallemissivity 

0,cp = angles in spherical coordinate 
systeme, 0 defined in Fig. 1 

K, = Rosseland mean absorption m- 
efficient defined by equation 
(18) 

K, = mean absorption coefficient de- 
fined by equation (19) 

K” = spectral absorption coefficient 
X = defined by equation (33) 
B = defined by equation (4) 
p = gas density 
r = Gamma function 
u = Stefan-Boltzmann constant = 

1.714 X lo-* Btu/(hr)(ft*)(R’) 
T = volume 
w = solid angle, eteradians 

Subrcrrbls 

e = referstocenterliie 
w = refers to wall 
2 = indirection2 
0 = defined in Fig. 1, also refers to gas at 

1 = refers to inner radius, except in E,1 
2 = refers to outer radius, except in E,, 

wall 
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Fig. 1 Sketch for deriving diffusion equations 

nongray gas bounded by gray walls will be considered. The ab- 
sorption coefficient is assumed not to vary appreciably over a 
mean free path for the radiation. 

Basic Equations 
To obtain the generalized diffusion equations for the radiation 

in a gas, together with the jump boundary condition a t  a wall, 
consider the radiation streaming through an area element dA at 
point (20, yo, za) from a volume element of gas dr a t  (2, y, z )  (Fig. 
1). The spectral emissive power er a t  (5, y, z )  can be related to 
conditions at (zo, yo, G )  by expanding e, in a three-dimensional 
Taylor series about (xo, yo, zo). This gives 

t I I I ' i I I I I I I I I I I I ' 1  I i I 1 
0 I 2  3 4 5 6 7 8 9 10 

OPTICAL THICKNESS, r ,L  

Fig. 2 Thermal radiation between Aat surfaces with intervening station- 
ary gas. Solid curves calculated from equation (26). 

where 

If we apply the binomial theorem twice to the factor in brackete 
we obtain 

The symbols are defined in the Nomenclature. 
from dr a t  frequency v which passes through dA is 

The emission 

In order for the exponential factor in equation (2) to be applica- 
ble, the assumption must be made that the spectral absorption 
coefficient K, ,  is effectively uniform over a mean free path for the 
radiation. 

The solid angle du equals dA cos 6 /78  and 

dr = 12 sin 0 dr dcp dB 

We can write equations (1)  and (2) in spherical coordinatee with 
origin at dA by setting 

z - z o = r s i n e c o s c p ,  y - ~ o = r s i n e e i n c p ,  
z - G = r c o 8 e  

From the preceding equations, the total radiant flux per unit 
frequency increment passing through dA from above is 

and r is the Gamma function. 
In order to obtain the radiation from below, we let 6 go from 

~ / 2  to T ,  instead.of from 0 to u/2, and take the negative value of 
the result: 

The net radiant heat transfer per unit area per unit frequency in- 
crement passing through dA in the direction z is 

dE* - dE"1 
dA qvr = 

1 I 
= - - 2 2 2 11 - (-1)"-"]Q(n, u, 8 )  7 

4* n = O  v = o  a s 0  

Similar expressions can be obtained for qyy and q... 

Next the energy jump at a gray wall which is immediately be- 
low but not touching the area dA will be obtained. As before, the 
radiation passing through the area from above is given by equa- 
tion (3). The energy coming from the wall and passing through 
dA is made up of radiation emitted by the wall and that reflected 
from the wall, the latter having been originally emitted by the 
gas. Thus 
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dE, = ee&A + (1  - c)&?Z, (7) neglected, bearuse he used an e m d o n  other than muation (11 1 

1 dE"1 

dA = (+ - i) qr. + q.. + - (8) 

Substituting equations ( 3 )  and (6) in (8) and removing t,he term 
for n = 0 from the summation give 

+ 1 2 2 f: [I + (-I)-]Q(n, u, s) 
8* n = l 9 = 0  8-0 

where Q(n, u, 8 )  is again given by equation (4). 
wall is above rather than below dA 

Similarly if the 

the total radiative beat flux and the total emieaive power. The 
spectral emissivepower e" can be written as a function of Y and the 
tntd emigive p w e r  c, = crT4 by mritkg P!mck'g &$&&sc 
function in the form 

Thus consider e, in equations (1 1 ) to (13) to be a function of Y and 
e,, and apply the rules of partial differentiation of composite func- 
tions. If we multiply the equations by dv and integrate from 0 to 
=, weobtain 

for a wall below the gas, and 

e @ - e b =  - -  (: 
- &(%) 

Equations (4), (6), (9), and (10) give the general expressions for 
the heat flux in the gas and for the energy jumps at the w&. It 
should be noted that the e x p d o n  for the heat flux is strictly 
accurate only for regions at least a radiation mean free path away 
from the walls, inasmuch aa the integration in equation (3) was 
carried to  infinity. However, as is done for heat conduction in 

for a wall above the gas, where 
(P '=s, K, 1 K r  ?!!dv (18) 

(19) 
1 1 de. 

(20) 

The derivatives of er with respect to e, in these equations are ob- 
tained from equation (14). For a gray gas, is independent of u 

rarefied gaees, we use the equation throughout the gas and ac- 
count for the effects of the walls by introducing jump boundary 

of higher order t,han the second. (Terms containing zero, first, 

2=s, z i p  
z = s ,  ZSFj 

conditions. 
OD 1 b2eV dv In the remainder of the paper we will neglect terms in the series 

and second derivatives are retained.) From equations (4), (61, 
(9), and (10) we t.hen obtain 

for a wall below the gas, and 

for a wall above the gas. The subscripts 0 are omitted in equation 
( 1 1 )  because that expression for the heat flux is used throughout 
the gas. I t  is correct to second order because the terms contain- 
ing second derivatives are zero. Equation (1  1) was obtained by 
Rosseland [2] and is generally known as the Rosseland approxi- 
mation. The first term on the right side of equation (12) or (13 j 
was obtained by Shorin [4]. Howevcr, hie results differ from 
those obtained here even when the second degree terms are 

and equation (20) becomes 

For a nongray gas i t  is, of course, necessary to know K. as a func- 
tion of Y and e, in order to evaluate equations (18) to (20). The 
Rosseland mean absorption coefficient K, has been calculated for 
high temperature air in reference 181. 

In the following sections equations (15) to (17) will be used for 
the solution of a few illustrative problem. 

Illustrative Examples and Comgarison With Exact Solutions 
Stationary Absorbing G a s  B*wnn Walls. Consider first the ra- 

diant heat transfer in a stationary gas bounded by two infinite, 
plane, parallel walls at horizontal planes 1 and 2. For this case 
q. is independent of z ,  the direction normal to  the walls, so that 
equation (15) can be integrated to give 

or 
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( 2 3 )  

where L is the distance betwwn the plates and K ,  is assulncd 
constant. Froin equations (lti), (17), and (22) the energy jriinps 
a t  the walls :ire 

(24) 

and 

(25) 

Note that the second and higher order derivatives in equations 
(16) and (17) are 0 for this case. Adding equations (23) to (25), 
and taking the reciprocal of the result give For sinall heat flux the last term can be neglected. 

A plot of the reciprocal of equation (31) for K J K ,  = 1, small heat 
flux, and for various values of radius ratio and wall emissivity is 
given in Fig. 3. For K,L = 0, the correct expression for q l /  [a( T,1' 
- TwL4)]  is 1/(( l/cl) + (rJrZ)[(1/€2) - 11) if the reflection is 
di8use. Thus equation (31) reduces to the correct expression for 
K,L = 0 only when rJr2 = 1. This is pcrliaps not surprising be- 
cause the series in equations (6), (9), and (10) was truncated a t  
ternis of order two. For the case of the plane plates the higher- 
order derivatives were zero, but here they are all nonzero. In 
order to give an idea of the range of values of K,L for which the 
present approximation is valid, curves for the 3Ionte Carlo solu- 
tion of Perlniutter and Howell [9] are plotted dashed in Fig. 3. 
I t  is evident that the approximation is good a t  rather low values 
of K,L when r?/r l  is not too large. As r l / r l  increases, the range of 
its applicability moves to higher values of K,L. However, in all 
cases the improvement over the usual diffusion approximation is 
considerable. Comparison of these results with the Monte Carlo 
solution indicates that they could be extrapolated to lower valuee 
of K,L by drawing a smooth curve which is tangent to the curve for 
the present results and which intersects the known correct ordi- 
natefor K,L = 0. 

where eb has been replticed by its equivalent, aTU4. 
Equation (26) is plotted against optical thickness K,L for 

several values of wall emissivity in Fig. 2.  Also plotted for coni- 
parison are an exact solution from reference [6], the usual dif- 
fusion approximation which neglects the energy jumps a t  the 
walls (equation (23)), :ind Shorin's result [4]. 

The improvement of the difyusion approximation by introduc- 
tion of jump boundary conditions is considerable, the agreement 
with the exact solution being within 5 percent for all values of 
KJ.  The agreement of the present analysis with the exact solu- 
tion is also considerably better than that from reference [-I], the 
latter giving values of heat flux about 25 percent too low for large 
values of K,L. The same comment applies to the results of 
reference [5]. 

As the wall emissivity decreases, the radiant heat transfer for a 
given temperature difference decreases. This is because the heat 
transfer for a given energy jump a t  the wall decreases as e de- 
creases (equation (21)). I t  is of interest that equation (26) re- 
duces to the correct form for heat transfer between walls with no 
absorbing gas when K,L = 0. 

Consider next the case where the wiills are cylindrical and con- 
centric rather than plane. In this case the heat transfer per unit 
area q is inversely proportional t o  radius, and equation (15) can be 
integrated to give 

1.2 "i- - PRESENT ANALYSIS 

REF [91 

APPROXIMATION lr2/r, =IO) 

MONTE CARLO SOLUTION, 

USUAL DIFFUSION 

--- 

\, -- 

L .  

or 

vhere the subscripts 1 :md 2 refer, respectively, to the inner and 
outer radii. The energy junips a t  the inner and outer walls are 
obtained from equations (16) and (17). The derivatives in those 
equations are obtained by setting r = (9 + Y*)*'~ in equation 
(27), differentiating, and setting y = 0. Thus 

1 1 1 1 1 1 1 , 1 , 1 , ~  I ,  
0 1 2 3 4 5 6 7 8 9 ! c  

OPTICAL THICKNESS, x,L 

Fig. 3 Thermal radiation between concentric cylindrical surfaces with 
intervening stationary gas. Solid curves calculated from equation (31) 
for small heat flux and K ~ / K .  = 1. 

For large values of r2/rl i t  may be reasonable to plot q1/ [a(Tw,4 
-  tu^')] against K,r1 rather than against K,L. Using the relation 

K ~ I  = KL/[ (rz / r l )  - I ]  and Fig. 3, we note that the present solu- 
tion for r2/r1 = 10 is in good agreement with the Monte Carlo 
solution for values of K J ~  as low as 0.7. That is, the solution is 
valid until the radiation mean free path becomes somewhat larger 
than the inner cylinder radius. From this point of view the 
agreement, even for r*/n = 10, seems to be exceptionally good. 

and 

Addition of equations (28) to  (30) 2nd use of the relation 11 = 
L/[(r2/rl) - 11, where L is the radial distance between the walls, 
give 
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Absorbing Gos With noat Sources and Flow. Next a simplified 
version of the radiation to or from a gas containing heat sources 
and flowing between two parallel walls will be considered. The 
net rate of heat flow out of a unit volume V. can be equated to 
the heat source within the volume Q' minus the rate of change of 
enthalpy within the volume pcQT/Dt.  From equation (15), the 
he:it flow vertnr is - ( 4 / 3 ~ ~ ) V e ~ :  if we consider only radiant heat 
tr:insfer. Thus the energy balance becomes 

PRESENT ANALYSIS 
MONTE CARLO SOLUTION, REF. [IO1 

\ 
7 B E '  I .  -- USUAL DIFFUSION APPROXIMATION 

\ 
1 

5 I- 
* - 

L.3 

\ 
CI 

I - *  \ 

where the properties are assumed constant. Equation (32) will, 
of course, bo the same as the heat conduction equation if we re- 
place 4/3u, by the thermal conductivity and e,, by the tempera- 
ture. For sbeady-atate conditions and velocities in the z-direc- 
tion only, the substantial derivative in the laat term becomes 
u dT/dz. If we neglect heat transfer in the direction of motion, 
as is usually done for heat conduction in moving fluids, equation 
(32)  becomes 

0' 2 4 6 8 IO 12 14 16 18 20 
OPTKAL THICKNESS, r,L 

l , l , l ~ l , l ~ l , l , i ~ l ~ l  

Fig. 4 Thmnal radiotion from 4M channd walb to lbwing ga wlth 
hod sourcln. Solid curves calculated from eqwtion (40) for small had  
nux and K ~ / K .  = 1. 

(33)  jump boundary conditions, equation (38). The agreement be 
tween the present modified diffusion solution and the Monte 
Carlo solution is reasonably good over the entire range of values 
of K,L, the agreement, of course, being best for the higher values of 
KJ. Comparison of these curves with that for the usual dit- 
fusion approximation shows, as in the preceding casea, the con- 
siderable effect of the energy jump at  the wall. 

Fig. 4 can be used to estimate the radiant heat transfer pro- 
duced by injecting smoke or particles into the gaa Btream. The 
ordinate in Fig. 4 can be written as h(T, - Te)/(TW4 - T:)u, 
where the heattransfer coefficient h = q.J( T ,  - T,) is baeed on 
the difference between the wall and center line temperatures. If 
sufficient smoke is injected into the stream to produce a K& of 
about 2, Fig. 4 indicates that, for temperatures on the order of 
4OOO deg F, heat-transfer coefficients on the order of 500 Btu/ 
(hr)(ft')(deg F )  might be obtained. It would not be expect4 
that the introduction of the smoke would greatly affect the pres- 
sure drop, so that this appears to be a possible way of obtaining 
very large h e a t - t d e r  coefficients in a gas without correapond- 
ingly large friction fadom. 

If we consider a tube, rather than a channel, equation (32)  or 
(33) can be written in cylindrical coordinates as 

I n  order to simplify the problem we consider the case where X is 
independent of z and the two walls are a t  the same temperature. 
Then, if z = 0 a t  the center of the channel, one integration of 
equation (33)  gives 

(34) 

Another integration gives 

(35) 

or 

3K,XL' 
epo = e,  = - 

32 (36) 

where the subscript 0 refers to conditions in the gas a t  the wall, c 
refers to the center of the channel, and L is the width of the 
channel. Evaluation of equations (15) and (34), at the wall givee 

- - - ( + ) = A  4 1 d  
3% r dr 

A = -  4, 
L (37) 

Solution of this equation gives 10 that  

The energy jump a t  the wall is given by equation (16) where the 
derivativea a t  the wall are obtained from equations (35) and 
(37). Thus 

The energy jump a t  the wall is obtained from equation (17) (qa = 
-q") and the derivativeg at the wall in that equation are calcu- 
lated by setting r2 = z* + y* in equation (42) and letting y go to 
zero after differentiating. The final equation is 

u(T,' - T:) - 3 K 3  1 1 -Is+;-? 
qr 

and 

A plot of the reciprocal of equation (43),  together with the Monte 
Carlo solution of reference 191, is plotted in Fig. 5. Good agree- 
ment between the two solutions is indicated. 

For a gaseous sphere c o n e n g  heat SOUTC~B, we c ~ n  write 
equation (32) or (33) as A plot of the reciprocal of equation (40) is given in Fig. 4 for 

K,/K, = 1, small heat flux, and for several values of E. Included for 
comparison are curvea for the Monte Carlo solution of Howell and 
Perlmutter [lo] and the usual diffusion approximation without 
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1.4- 

1.2- 

1.0- 

- 
OPTICAL THICKNESS, R,D 

might, for instance, be used to estimate the heat transfer from an 
arc of radius rl to  an absorbing gas flowing along it through a tube 
of radius r2. 

- PRESENT ANALYSIS 
--- MONTE CARLO SOLUTION, REF. [91 

\ 
\ 

Fig. 5 Thermal radiation from tube to (lowing gas with heat sources. 
Solid curves calculabd from equation (43) for small heat flux and 
K r / K #  = 1. 

and 

3K,9w r1 eg - e,, = - 
40 (45) 

For this case we obtain the derivatives in equation (17) by setting 
rf = 2% + yz + z1 in equation (45) and letting y and z go to  zero 
after differentiating. The final equation for the sphere is 

cJ(Tw4 - Td) 3 K 3  1 1 = -  
Qw 16 2 

Note the similarity between equations (40), (43), and (46). 
As a final example consider a radiating gas flowing in an 

annulus which is heated a t  the inner radius t-1 and cooled at the 
outer one r2. Integration of equation (41) between r1 and rl and 
use of equations (16) and (17) gives, for this case, 

and 

where L is again the difference between the inner and outer radii, 
and X is defined by equation (33). Equations (47) and (48) 

sults for all values of optical thickness. The-mults for this case 
indicate that very high heat-transfer coefficients might be obtained 
by introducing smoke or particles into a gas flowing in a passage 
a t  high temperatures. The effect of wall emissivity, which is 
neglected in the usual diffusion approximation, is accounted for in 
the present method. The results can be applied to  a nongray gas. 
if the spectral absorption coefficient of the gas is known as a func- 
tion of frequency and temperature. 
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D I S C U S S I O N  
J. R. Howell2 and M. Perlmutter2 

The discussers have qpplied the diffusion approximation with 
jump boundary condition aa given here to the case of radiant 
transfer through a real gas with temperature dependent absorp- 
tion coefficient,* and some points which may prove helpful were 
found. 

Generally, although a gaa may be highly absorbing on the aver- 
age, there are usually windows in the spectrum where the gas is 
relatively transparent. In equations (18)-(20), if K” is zero any- 
where in the spectrum, the integrals become improper and invali- 

* National Aeronautics and Space Administration, Lewis Research 
Center, Cleveland, Ohio. 

* J. R. Howell and M. Perlmutter, “Monte Carlo Solutions of 
Radiant Heat Transfer in a Nongrey Nonisothermal Gas With 
Temperature Dependent Properties,” Presented at AIChE National 
Meeting, San Juan, Puerto Rico, October 2,1963. 

Journal of Heat Transfer M A Y  1 9 6 4  / 245 



date the results. If the derivation is carried out over a wsve-. 
length interval Av, rather than the entire interval, it  is found 
that  these equations hecome: 

pendmct, assuming one constant value of ~ , ,b  though the gas 
may lead to considerable error. R e  can assume K,,br aa defined 
by equation (49) to be a polynomial of the form: 

(40) 

which reduce to Deissler's equations as Av approaches the range 
G- a. 

Using these equations, the analysis can be carried out for the 
strongly absorbing wavelength band. The effects due to the 
remaining part of the spectrum can be obtained by assuming the 
gas to be transparent or by using the transparent approximation 
in this part of the spectrum. This is discussed more fully in foot- 
note 3. 

If the gas absorption properties are strongly temperature d e  

= A + BZ + CZ' + . . . . 
for the one-dimensional problem, where Z is the coordinate along 
which &,A" varies. This of course requires an iterative soiution 
since the coefficients 3re determined by the temperature distribu- 
tion. 

Author's Closure 
The author would like to thank the discussers for their interest 

in the paper. Their suggestion for the treatment of windows in 
the spectrum should be helpful to those interested in applying 
the method in such cases. As implied by the discussers, the 
diffusion approximation does not generally apply for such win- 
dows. In  fact it  should be used with some caution for any 
region of the spectrum where the gas is not optically thick, even 
though the overall optical thickness may be high. The same 
caution should be used when the absorption coefficient is small 
or zero over a portion of the gas space, even though i t  may be 
high over most of the space. It should also be kept in mind that 
the derivation was carried out for the case where the absorption 
coefficient is effectively constant over a radiation mean free 
path. More work needs to be done to  determine whether or not 
the equations must be modified when that is not the ewe. The 
method works best, of course, at very high temperatures and for 
thick gases. When the gas contains smoke or particles, thw 
conditions can usually be relaxed to some extent. 
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